GitGraph - Architecture Search Space Creation through Frequent Computational Subgraph Mining
نویسندگان
چکیده
The dramatic success of deep neural networks across multiple application areas often relies on experts painstakingly designing a network architecture specific to each task. To simplify this process and make it more accessible, an emerging research effort seeks to automate the design of neural network architectures, using e.g. evolutionary algorithms or reinforcement learning or simple search in a constrained space of neural modules. Considering the typical size of the search space (e.g. ~1010 candidates for a 10-layer network) and the cost of evaluating a single candidate, current architecture search methods are very restricted. They either rely on static pre-built modules to be recombined for the task at hand, or they define a static hand-crafted framework within which they can generate new architectures from the simplest possible operations. In this paper, we relax these restrictions, by capitalizing on the collective wisdom contained in the plethora of neural networks published in online code repositories. Concretely, we (a) extract and publish GitGraph, a corpus of neural architectures and their descriptions; (b) we create problem-specific neural architecture search spaces, implemented as a textual search mechanism over GitGraph; (c) we propose a method of identifying unique common subgraphs within the architectures solving each problem (e.g., image processing, reinforcement learning), that can then serve as modules in the newly created problem specific neural search space.
منابع مشابه
Smaller Architecture Search Spaces
To simplify neural architecture creation, AutoML is gaining traction from evolutionary algorithms to reinforcement learning or simple search in a constrained space of neural modules. A big issues is its computational cost: the size of the search space can easily go above ̃10 candidates for a 10-layer network and the cost of evaluating a single candidate is high even if it’s not fully trained. I...
متن کاملOn Speeding up Frequent Approximate Subgraph Mining
Frequent approximate subgraph (FAS) mining has become an interesting task with wide applications in several domains of science. Most of the previous studies have been focused on reducing the search space or the number of canonical form (CF) tests. CF-tests are commonly used for duplicate detection; however, these tests affect the efficiency of mining process because they have high computational...
متن کاملA Closed Frequent Subgraph Mining Algorithm in Unique Edge Label Graphs
Problems such as closed frequent subset mining, itemset mining, and connected tree mining can be solved in a polynomial delay. However, the problem of mining closed frequent connected subgraphs is a problem that requires an exponential time. In this paper, we present ECE-CloseSG, an algorithm for finding closed frequent unique edge label subgraphs. ECE-CloseSG uses a search space pruning and ap...
متن کاملDiscriminative Subgraph Mining for Protein Classification
Protein classification can be performed by representing 3-D protein structures by graphs and then classifying the corresponding graphs. One effective way to classify such graphs is to use frequent subgraph patterns as features; however, the effectiveness of using subgraph patterns in graph classification is often hampered by the large search space of subgraph patterns. In this paper, the author...
متن کاملEfficient Frequent Connected Induced Subgraph Mining in Graphs of Bounded Tree-Width
We study the frequent connected induced subgraph mining problem, i.e., the problem of listing all connected graphs that are induced subgraph isomorphic to a given number of transaction graphs. We first show that this problem cannot be solved for arbitrary transaction graphs in output polynomial time (if P 6= NP) and then prove that for graphs of bounded tree-width, frequent connected induced su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.05159 شماره
صفحات -
تاریخ انتشار 2018